

Learnsoft Enterprise Training
4350 Executive Drive Ste. 100 l San Diego, CA 92121 | Office: 858.546.1400 l Fax: 858.546.1791

 Red Hat Enterprise Linux Development
 (RHD251)
Length: 5 Days

Summary: The Red Hat Enterprise Linux Development (RHD251) course rapidly trains programmers to develop applications
and programs on Red Hat Enterprise Linux. Over the span of 5 days, students are provided hands-on training, concepts, and
demonstrations with emphasis on realistic labs and programming exercises.

Prerequisites: Experience in C programming, shell scripting in a UNIX or Linux environment, experience with editors such as vi,
emacs

Target Audience: Experienced C programmers who want to learn key skills for creating applications and programs on Red Hat
Enterprise Linux. Microsoft Windows and UNIX programmers migrating their software to Linux.

COURSE CONTENT

1: GCC-GNU COMPILER COLLECTION

 GNU Compiler Collection (GCC)

 History of GCC

 Four Stages of GCC

 Interrupting the compiler

 Compiling a C program

 Preprocessor features

 Predefined preprocessor symbols

 Warnings and extensions

 Optimization

 Linking

2: BUILDING SOFTWARE WITH MAKE

 Introducing make

 How make works

 Makefile rule syntax

 Example: makefile first steps

 Makefile improved

 Implicit rules

 Example: simpler Is better makefile

 Variables

 Defining variables

 Example: makefile with variables

 Automatic variables

 Special targets

 Defining useful phony targets

3: THE GNU C LIBRARY AND SYSTEM CALLS

 Library goals

 Library standards

 GNU C library - glibc

 Library functions vs. system calls

 Using system calls

 Handling errors with errno

 Making sense of errno

 Using strace

4: PROGRAM ARGUMENTS AND ENVIRONMENT

 Program startup

 Using argc/argv

 Handling options with getopt()

 Handling options with getopt_long()

 Environment

 Manipulating the environment

 Program exit

 Registering exit handlers

5: BUILDING LIBRARIES

 Why use libraries?

 Static versus shared

 Static library benefits

 Shared library benefits

 Creating a static library

 Using static libraries

5: BUILDING LIBRARIES (CONT’D)

 Creating a shared library

 Using shared libraries

 Shared library management

 Library locations

 ldconfig

6: TIME FUNCTIONS

 When does time begin?

 Time data types

 Determining real time

 Converting time_t

 Converting tm structure

 Process time

 Time arithmetic

 Second resolution timers

 Fine-grained timers

 Real-time clock (RTC)

7: PROCESS MANAGEMENT

 What a process is

 Process relationships

 Create a child process

 Doing something else

 Related execve() functions

 Wait for a child

 More precise waiting

 Changing priority/nice

 Real-time priority

8: MEMORY OPERATIONS

 Allocating and freeing memory

 Memory alignment

 Locked memory

 Memory copy and initialization

 Memory comparison and search

9: DEBUGGING

 What is my program doing?

 Source-level debugging

 Invoking gdb

 Getting started with gdb

 Examining and changing memory

 Debuginfo libraries

 Using gdb with a running process

 Using gdb to autopsy a crash

 Debugging libraries - ElectricFence

 Debugging with valgrind

 Profiling for performance

10: BASIC FILE OPERATIONS

 Stream vs. system calls

 Opening and closing streams

 Stream input/output functions

 Stream status/errors

 Stream file positioning

 Stream buffering

 Temporary and scratch files

 Opening and closing file descriptors

 File descriptor I/O

 Repositioning file descriptors

 Stream/file descriptor conversions

 cat using ANSI I/O

 cat using POSIX I/O

11: COMMUNICATING WITH PIPES

 Introduction to pipes

 Standard I/O: popen()/pclose()

 Using popen()/pclose()

 System call: pipe()

 Using pipe()

 Named pipes

 Using named pipes

 For further reading

12: MANAGING SIGNALS

 What signals are

 Blocking and checking signals

 Working with signal sets

 Example of blocking signals

 Handling signals with sigaction()

 sigaction() example

 Handling signals with signal()

 Sending signals

 Real-time signals

13: PROGRAMMING WITH THREADS

 Introducing threaded programming

 Applications suited to threads

 Building threaded programs

 Creating threads

 Thread identity

 Synchronizing by joining

 Detaching threads

 Stopping threads

 Synchronizing with sutexes

 Using mutexes

 Read/ and write locks

 Conditional variables

13: PROGRAMMING WITH THREADS (CONT’D)

 Using conditional variables

 A conditional variable gotcha

 For further reading

14: ADVANCED FILE OPERATIONS

 Directory operations

 File system operations

 Multiplexed I/O with select()

 Miscellaneous I/O functions

 Memory mapped I/O

 Using memory mapped I/O

 File locking

15: INTERPROCESS COMMUNICATION (IPC)

 Interprocess communication (IPC)

 POSIX IPC overview

 POSIX shared memory

 POSIX semaphores

 POSIX message queues

 System V IPC overview

 System V IPC shared memory

 System V IPC semaphore arrays

 System V IPC message queues

16: BASIC NETWORK PROGRAMMING

 Linux networking overview

 Getting started with socket()

 Client functions

 Specifying IPv4 addresses

 Host versus network byte order

 Example TCP/IP client

 Address conversion functions

 Using getaddrinfo()

 Server functions

 Example TCP/IP server

 Datagram communication with UDP

17: WORKING WITH THE LINUX COMMUNITY

 Getting in touch with the community

 General considerations

 Building a community

 Licenses

 GPL

 LGPL

 BSD

 Creative commons

